عمران

دانلود پایان نامه دکتری خاک و پی :آنالیز انتشار موج در خاک های دانه ای با بهره گرفتن از روش المان های مجزا

دانلود پایان نامهدکتری در رشته مهندسی عمرانگرایش مهندسی خاک و پی

با عنوان:آنالیز انتشار موج در خاک های دانه ای با بهره گرفتن از روش المان های مجزا

دانشگاه صنعتی امیرکبیر
(پلی تکنیک تهران)

دانشكده مهندسی عمران و محیط زیست

پایان‌نامه دکتری

گرایش مکانیک خاک و پی

عنوان

آنالیز انتشار موج در خاک­های دانه­ای با بهره گرفتن از روش المان­های مجزا

بهمن 93

 

 

تکه هایی از متن به عنوان نمونه :

چکیده

در این پژوهش از روش المان مجزا برای آنالیز انتشار موج و بررسی عوامل موثر بر سرعت موج در خاکهای دانه­ای استفاده شده است. روش المان­های مجزا به سبب امکان تهیه نمونه­ های کاملاً مشابه و بررسی اثر تغییرات یک پارامتر معین بر روی رفتار نمونه­ ها حائز اهمیت است. همچنین این روش درکی از تغییرات رخ داده در مقیاس میکرو از مصالح دانه­ای بدست می­دهد که با سایر روش­های آزمایشگاهی و عددی قابل حصول نیست. به منظور مدل­سازی، نمونه­ ها از مجموعه متشکل از دیسک­ها با دانه­بندی مشخص برای مطالعات دو بعدی ایجاد شده­ اند. از نرم افزار PFC 2D برای انجام شبیه­سازی و آنالیزهای مربوطه استفاده شده است.

مطالعات در زمینه انتقال موج فشاری در خاک­های دانه­ای توسط محققین مختلف انجام شده است. آن­ها به بررسی میزان تاثیر عوامل مختلف بر سرعت انتشار موج پرداختند. فاکتورهایی مانند: عرض نمونه، نسبت میرایی، شکل ذرات، چیدمان ذرات، فرکانس ارتعاش، قطر و سختی سطح ذرات، فشار یا عمق پارامترهایی هستند که بیشتر مطالعات و شبیه­سازی­های محققین مختلف معطوف به آن­ها بوده است. با وجود تحقیقات قابل توجه انجام شده بر روی انتشار موج و پارامترهای موثر بر آن، هنوز عوامل مختلفی وجود دارند که ممکن است بر انتشار موج در خاک­های دانه­ای تاثیرگذار باشند، که به بررسی میزان تاثیر آن­ها بر فرایند انتشار موج پرداخته نشده است. به همین جهت، در این تحقیق میزان تاثیر ضریب اصطکاک ذرات، تخلخل مجموعه ذرات، دانسیته ذرات، ضریب غیر یکنواختی اندازه دانه­ها و دانه بندی مجموعه ذرات بر سرعت انتشار موج بررسی شده است. متغیرهای مورد استفاده جهت بررسی عوامل فوق عبارتند از تغییرات تخلخل نمونه خاک در حین اعمال موج، سرعت ذرات، نمایش زنجیره نیروهای تماسی و همچنین متوسط عدد تماسی هر نمونه خاک و نیروهای نامتعادل کننده می­باشند.

نتایج این مطالعه حاکی از آن است که ارتباط مستقیمی بین تعداد تماس­های مجموعه ذرات و سرعت انتشار موج وجود دارد. همچنین خواص مصالح مانند دانسیته ذرات از مهمترین پارامترهای تاثیرگذار بر سرعت موج می­باشند.

واژه‌های کلیدی:

المان مجزا- سرعت موج- تخلخل- اصطکاک- دانه بندی خاک



فهرست

فصل اول مقدمه

مقدمه 1

فصل دوم روش المان‏های مجزا

2-1-مقدمه 4
2-2-مایکرومکانیک محیط‏های دانه‏ای 5
2-3-روش المان‏های مجزا 6
2-4-چرخه محاسبات 6
2-5-الگوریتم تعیین نیروهای بین ذره‏ای 7
2-6-اعمال معادله حرکت 11
2-7- شرایط مرزی 13
2-7-1- شرایط فضای تناوبی 13
2-7-2- شرایط مرزی صلب 14
2-7-3- شرایط مرزی هیدرواستاتیکی 14
2-7-4- شرایط مرزی جاذب انرژی 15
2-8-نتیجه گیری 15

فصل سوم مروری بر تحقیقات گذشته

3-1-مقدمه 17
3-2-مدل سازی انتشار موج برشی در خاک دانه­ای 18
3-2-1-انتشار موج برشی در ستون خاک با بستر صلب 21
3-2-2-انتشار موج برشی در ستون خاک با شرایط مرزی جاذب انرژی در بستر 29
3-3-مدل سازی انتشار موج فشاری در خاک دانه­ای با بهره گرفتن از DEM 34
3-3-1-بررسی اثر عرض نمونه در انتشار موج 34
3-3-2-بررسی اثر میرایی ویسکوز در انتشار موج 37
3-3-3-بررسی اثر شکل ذرات در انتشار موج 38
3-3-4-بررسی اثر چیدمان ذرات در انتشار موج 39
3-3-5-بررسی اثر فرکانس در انتشار موج 40
3-3-6-بررسی اثر قطر ذرات در انتشار موج 44
3-3-7-بررسی اثر ضریب اصطکاک ذرات در انتشار موج 46
3-3-8-بررسی اثر فشار در سرعت انتشار موج 48
3-3-9-بررسی اثر branch vector در انتشار موج 50
3-3-9-1-مدل سازی محیط دانه­ای خشک 51
3-3-9-2-مدل سازی محیط دانه­ای سیمانته شده 55
3-4-نتیجه ­گیری 59

 

فصل چهارم مراحل مدلسازی و کالیبراسیون

4-1-مقدمه 61
4-2- تولید ذرات 61
4-3-اعمال شرایط مرزی و اولیه 62
4-4- انتخاب مدل تماسی 63
4-4-1-مولفه ­های رفتاری 63
4-4-1-1-سختی 63
4-4-1-2-لغزش 64
4-4-1-3-رفتارهای چسبندگی 64
4-4-2-مدل هرتز 64
4-4-3-نتیجه گیری 65
4-5-اختصاص دادن خواص به مصالح 66
4-6-میرایی 66
4-6-1-میرایی محلی 67
4-6-2-میرایی ویسکوز 67
4-7-مشخص کردن گام زمانی جهت تحلیل و استفاده از روش density scaling 68
4-8-شرایط مرزی جاذب انرژی و بارگذاری 69
4-8-1- بارگذاری 72
4-9-صحت سنجی (کالیبراسیون مدل) 73
4-9-1-آزمایشات انجام شده توسط Stephen R.Hostler (2005) 73
4-9-2-نتایج بدست آمده توسط Stephen R.Hostler (2005) 75
4-9-3-نتایج بدست آمده از شبیه سازی 76
4-10-نتیجه گیری 76

فصل پنجم بررسی اثر پارامترهای مختلف بر سرعت موج

5-1-مقدمه 78
5-2-بررسی نحوه انتقال موج در مصالح دانه­ای 78
5-3-بررسی اثر میزان تخلخل بر سرعت انتشار موج 83
5-3-1-بررسی تغییرات عدد متوسط تماسی بر سرعت انتشار موج 83
5-3-2-بررسی تغییرات تخلخل برای نمونه­ های مختلف 85
5-3-3-بررسی تغییرات میانگین نیروهای تماسی برای نمونه­ های مختلف 88
5-3-4-بررسی تغییرات نیروهای نامتعادل کننده در طی اعمال موج 90
5-3-5-بررسی تغییرات تنش در جهت­های افقی و قائم 91
5-3-6-بررسی تغییرات سرعت ذرات در طی اعمال موج 93
5-4-بررسی اثرسختی سطح ذرات بر سرعت انتشار موج 97
5-4-1-بررسی تغییرات عدد متوسط تماسی بر نمونه­ ها 97
5-4-2-بررسی تغییرات سرعت 100
5-5-بررسی اثر دانسیته ذرات بر سرعت انتشار موج 100
5-6-بررسی اثر میزان غیر یکنواختی دانه­ها (PDI) بر سرعت انتشار موج 103
5-6-1-تعریف ضریب غیر یکنواختی دانه­ها (PDI) 103
5-7- بررسی میزان تاثیر دانه بندی خاک بر سرعت انتشار موج 106
5-8-نتیجه گیری 113

فصل ششم نتیجه ­گیری و پیشنهادات

6-1-نتیجه ­گیری 114
6-2-پیشنهادات 115

مراجع

مراجع 116



 

 

فهرست اشکال

شکل 2-1- یک ذره در تماس با سایر ذرات در تعادل استاتیکی 5
شكل 2-2- مراحل مختلف مدل‌سازی مجموعه ذرات با بهره گرفتن از روش DEM در یک گام زمانی 7
شکل 2-3 – دو ذره‏‏ی کروی در تماس با هم 8
شکل 2-4- اندرکنش ذره – ذره 9
شکل 2-5- الف) تغییرات نیرو – تغییرمکان برای نیروی مماسی تماس، ب) تغییرات نیرو – تغییرمکان برای نیروی نرمال تماس 10
شکل 2-6- صفحه تماس و نیروی مماسی تماس 10
شکل 2-8 – شرایط مرزی هیدرواستاتیکی و تماس ذره با صفحه مرزی(Ng, 2002) 15
شکل3-1-مجموعه شبیه سازی شده در DEM El Shamy Zamaniو 2011 20
شکل3-2-پروفیل تخلخل اولیه سه نوع خاک مورد استفاده در شبیه سازی Zamaniو El Shamy (2011) 20
شکل3-3-تاریخچه زمانی شتاب افقی محاسبه شده در محل­های مشخص شده در مرکز توده خاک و و برای حالت­های a: ، b: ، و c: ،( Zamaniو El Shamy (2011)) 22
شکل3-4-نتایج DEM برای حلقه­های تنش-کرنش برای سه نوع خاک در عمق 4 متری زیر سطح( Zamaniو El Shamy (2011)) 23
شکل3-5-تغییرات مدول برشی در زمان لرزش در عمق 4 متری زیر سطح و و برای حالات a: ، b: ، و c: ،( Zamaniو El Shamy (2011)) 24
شکل3-6-مشخصات دینامیکی خاک محاسبه شده برای سه نمونه در عمق 4 متری زیر سطح a: منحنی مدول برشی کاهش یافته، b: منحنی نسبت میرایی برای حالت ( Zamaniو El Shamy (2011)) 25
شکل3-7-مشخصات دینامیکی خاک محاسبه شده a: منحنی مدول برشی کاهش یافته، b: منحنی نسبت میرایی برای حالت با بهره گرفتن از نتایج DEM در عمق­های متفاوت( Zamaniو El Shamy (2011)) 26
شکل 3-8-پروفیل­های محاسبه شده، a: مدول­های برشی در کرنش کم، b: سرعت موج برشی برای توده­های خاک متفاوت( Zamaniو El Shamy (2011)) 27
شکل3-9-پروفیل فاکتور دامنه شتاب برای انواع خاک در فرکانس 3 هرتز و دامنه شتاب­های a: 0.01g، b: 0.1g، c: 0.4g( Zamaniو El Shamy (2011)) 27
شکل 3-10-مقایسه نتایج DEM و SHAKE در شتاب ( Zamaniو El Shamy (2011)) 31
شکل 3-11-تاریخچه زمانی شتاب افقی محاسبه شده در محل عمق­های تعیین شده برای حالت ، a: بستر الاستیک و فرکانس 1 هرتز، b: محیط نامحدود و فرکانس 1 هرتز، c: بستر الاستیک و فرکانس 3 هرتز، d: محیط نامحدود و فرکانس 3 هرتز( Zamaniو El Shamy (2011)) 32
شکل 3-12-پروفیل دامنه شتاب برای حالت ، a: و فرکانس 1 هرتز، b: و فرکانس 3 هرتز،( Zamaniو El Shamy (2011)) 33
شکل 3-13-نتایج DEM برای حلقه­های تنش-کرنش سیکلی برای در عمق 4 متری زیر سطح، a: بستر سنگی صلب و فرکانس 1 هرتز، b: بستر الاستیک و فرکانس 1 هرتز، c: محیط نامحدود و فرکانس 1 هرتز، d: بستر سنگی صلب و فرکانس 3 هرتز، e: بستر الاستیک و فرکانس 3 هرتز، f: محیط نامحدود و فرکانس 3 هرتز( Zamaniو El Shamy (2011)) 33
شکل 3-14-شکل هندسی مدل Constantine N. Tomasو همکاران (2009) 34
شکل 3-15-تعریف زمان رسیدن اولین موج( Constantine و همکاران (2009)) 36
شکل 3-16-سرعت موج گروهی P در مقابل فرکانس برای نسبت­های H/B مختلف، ، B/d=25 و ( Constantine N. Tomasو همکاران (2009)) 36
شکل 3-17-سرعت موج گروهی P در مقابل برای نسبت­های H/B مختلف، ، B/d=25 و ( Constantine N. Tomasو همکاران (2009)) 37
شکل 3-18-سرعت موج گروهی P در مقابل برای نسبت­های میرایی ویسکوز متفاوت، B/d=25، H/B=2 و ( Constantine N. Tomasو همکاران (2009)) 37
شکل 3-19-میرایی موج با عرض­های متفاوت (Williams و همکاران (2008)) 38
شکل 3-20-محدوده تماس، کانتورهای تنش برشی در شکل­های متفاوت(Williams و همکاران (2008)) 39
شکل 3-21-چیدمان­ها و نیروهای تماسی متفاوت(Williams و همکاران (2008)) 40
شکل 3-22-سیگنال­های به وجود آمده در نتیجه حرکت دیواره چپی سلول شبیه سازی نشان داده شده است. سیگنال ورودی، فشار در دیواره چپی با خط پر و فشار در دیوار راستی با خط چین نشان داده شده است. منحنی­های بالا از اندازه ­گیری­های انجام شده در 20 ذره بالای بستر بدست آمده و منحنی­های پایین از اندازه ­گیری­های انجام شده در 50 ذره بالای بستر بدست آمده است. (Stephen R. Hostler (2005)) 41
شکل 3-23-فاصله فازی بین فشار خروجی (دیوار راستی) و تغییر مکان دیوار چپی. (Stephen R. Hostler (2005)) 42
شکل 3-24-سرعت فازی محاسبه شده از فاصله فازی. (Stephen R. Hostler (2005)) 43
شکل 3-25-دامنه فشار ثبت شده در دیواره چپی سلول شبیه سازی. هر نقطه میانگین 5 شبیه سازی مستقل است. (Stephen R. Hostler (2005)) 44
شکل 3-26-سرعت موج گروهی P در مقابل فرکانس برای قطرهای مختلف ذرات، ، H/B=2 و ( Constantine N. Tomasو همکاران (2009)) 45
شکل 3-27-سرعت موج گروهی P در مقابل برای قطرهای مختف ذرات، ، H/B=2 و ( Constantine N. Tomasو همکاران (2009)) 45
شکل 3-28-سرعت موج اندازه گیری شده توسط Hostler (2005) برای قطرهای مختلف 46
شکل 3-29-زنجیره تک بعدی از ذرات بیضوی (Shukla (1993)) 47
شکل 3-30-نتایج بدست آمده از آنالیز اثر سختی سطح ذرات در سرعت نشر موج (Shukla (1993)) 47
شکل 3-31-بافت معمول در مصالح دانه­ای (Martin H. Sadd و همکاران 1999) 51
شکل 3-32-قانون تماسی هیستریک غیر خطی 52
شکل 3-33-مجموعه شدیداً غیر ایزوتروپیک، 882 ذره، نسبت تخلخل 0.43 و عدد تماس برابر با 2.87(Martin H. Sadd و همکاران 1999) 53
شکل 3-34-مجموعه غیر ایزوتروپیک ضعیف، 1042 ذره، نسبت تخلخل 0.25 و عدد تماس برابر با 4.17 (Martin H. Sadd و همکاران 1999) 55
شکل 3-35-طرح شماتیک مدل چسبندگی تماسی(Martin H. Sadd و همکاران 1999) 56
شکل 3-36-مدل تصادفی ایجاد شده برای ذرات سیمانته شده(Martin H. Sadd و همکاران 1999) 57
شکل 3-37-پراکندگی بافت سیمانته شده برای مدل­های قائم و افقی(Martin H. Sadd و همکاران 1999) 58
شکل4-1-نمایی از مجموعه ذرات 62
شکل4-2- چگونگی برقراری ارتباط بین ذره- ذره یا ذره- مرز 63
شکل 4-3-رفتار نیرو-تغییر مکان برای تماسی که در یک نقطه اتفاق می ­افتد 64
شکل4-4-نمایش سرعت ذرات در زمان اعمال موج در شرایط ثابت تکیه گاهی 71
شکل4-5-نمایش سرعت ذرات در زمان اعمال موج در شرایط جاذب انرژی 71
شکل4-6-نحوه اعمال بارگذاری به مجموعه ذرات 73
شکل 4-7- نمایی شماتیک از دستگاه جهت آزمایش انتشار موج 74
شکل 4-8– فاصله فازی بین سیگنال­ها در دو مبدل به فاصله 40 میلی­متر در برابر فرکانس برای دو شتاب (خط ممتد) و (خط چین) نشان داده شده است. 75
شکل 4-9–فاصله فازی در مقابل فرکانس ارتعاش موج 76
شکل5-1-نمایش زنجیره نیروها در محیط­های دانه­ای 79
شکل 5-2- نمایش شبکه زنجیره نیروهای تماسی بین ذرات در مدل سازی انجام شده در کار حاضر 80
شکل 5-3-الف) نمایش نیروهای تماسی در 150 امین گام بارگذاری 81
شکل 5-3-ب) نمایش نیروهای تماسی در 300 امین گام بارگذاری 81
شکل 5-3-ج) نمایش نیروهای تماسی در 450 امین گام بارگذاری 82
شکل 5-3-د) نمایش نیروهای تماسی در 600 امین گام بارگذاری 82
شکل5-4-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای تخلخل 0.15 و CN=3.7 83
شکل5-5-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای تخلخل 0.18 و CN=3. 5 84
شکل5-6-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای تخلخل 0.2 و CN=3.2 84
شکل5-7-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای تخلخل 0.23 و CN=3.04 85
شکل5-8-نمایش تغییرات تخلخل با زمان برای نمونه با تخلخل 0.15 (محور افقی زمان و محور قائم تخلخل می­باشد) 86
شکل5-9-نمایش تغییرات تخلخل با زمان برای نمونه با تخلخل 0.18 (محور افقی زمان و محور قائم تخلخل می­باشد) 86
شکل5-10-نمایش تغییرات تخلخل با زمان برای نمونه با تخلخل 0.2 (محور افقی زمان و محور قائم تخلخل می­باشد) 87
شکل5-11-نمایش تغییرات تخلخل با زمان برای نمونه با تخلخل 0.23 (محور افقی زمان و محور قائم تخلخل می­باشد) 87
شکل5-12-نمایش تغییرات میانگین نیروهای تماسی با زمان برای نمونه با تخلخل 0.15 (محور افقی زمان و محور قائم میانگین نیروهای تماسی می­باشد) 88
شکل5-13-نمایش تغییرات میانگین نیروهای تماسی با زمان برای نمونه با تخلخل 0.18 (محور افقی زمان و محور قائم میانگین نیروهای تماسی می­باشد) 89
شکل5-14-نمایش تغییرات میانگین نیروهای تماسی با زمان برای نمونه با تخلخل 0.2 (محور افقی زمان و محور قائم میانگین نیروهای تماسی می­باشد)

 

89
شکل5-15-نمایش تغییرات میانگین نیروهای تماسی با زمان برای نمونه با تخلخل 0.23 (محور افقی زمان و محور قائم میانگین نیروهای تماسی می­باشد) 90
شکل5-16-نمایش تغییرات نیروهای نامتعادل کننده (unbalanced force) با زمان (محور افقی زمان و محور قائم میانگین نیروهای تماسی می­باشد) 91
شکل5-17-نمایش تغییرات تنش در جهت افقی با زمان (محور افقی زمان و محور عمودی تنش در جهت افقی می­باشد) 92
شکل5-18-نمایش تغییرات تنش در جهت قائم با زمان (محور افقی زمان و محور عمودی تنش در جهت قائم می­باشد) 92
شکل5-19-نمایش تغییرات سرعت ذرات در مدت زمان اعمال بارگذاری 94
شکل5-20-نمایش انتقال موج فشاری به ذره (به فاصله 10 سانتی­متر از کف نمونه) در نمونه با تخلخل 0.15 (مجور افقی زمان و محور قائم سرعت ذره می­باشد) 95
شکل5-21- نمایش انتقال موج فشاری به ذره (به فاصله 10 سانتی­متر از کف نمونه) در نمونه با تخلخل 0.18 (مجور افقی زمان و محور قائم سرعت ذره می­باشد) 95
شکل5-22- نمایش انتقال موج فشاری به ذره (به فاصله 10 سانتی­متر از کف نمونه) در نمونه با تخلخل 0.2 (محور افقی زمان و محور قائم سرعت ذره می­باشد) 96
شکل5-23- نمایش انتقال موج فشاری به ذره (به فاصله 10 سانتی­متر از کف نمونه) در نمونه با تخلخل 0.23 (مجور افقی زمان و محور قائم سرعت ذره می­باشد) 96
شکل5-24-نمایش تغییرات سرعت با تخلخل 97
شکل5-25-نمایش تغییرات تخلخل با زمان برای نمونه با ضریب اصطکاک 0.1 (محور افقی زمان و محور قائم تخلخل می­باشد) 98
شکل5-26-نمایش تغییرات تخلخل با زمان برای نمونه با ضریب اصطکاک 0.3 (محور افقی زمان و محور قائم تخلخل می­باشد) 98
شکل5-27-نمایش تغییرات تخلخل با زمان برای نمونه با ضریب اصطکاک 0.5 (محور افقی زمان و محور قائم تخلخل می­باشد) 99
شکل5-28-نمایش تغییرات تخلخل با زمان برای نمونه با ضریب اصطکاک 0.7 (محور افقی زمان و محور قائم تخلخل می­باشد) 99
شکل5-29-نمایش تغییرات سرعت با ضریب اصطکاک 100
شکل5-30-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای و عدد متوسط تماسی برابر با CN=3.5 101
شکل5-31-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای و عدد متوسط تماسی برابر با CN=3.5 101
شکل5-32-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای و عدد متوسط تماسی برابر با CN=3.5 102
شکل5-33-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای و عدد متوسط تماسی برابر با CN=3.5 102
شکل5-34-نمایش تغییرات سرعت با دانسیته 103
شکل5-35- نمونه ای از monodisperse یا یکنواخت 104
شکل5-36- نمونه ای از polydisperse یاغیریکنواخت 104
شکل5-37-نمایش تغییرات سرعت با PDI 106
شکل5-38-منحنی دانه بندی خاک A، Cc=0.92 و Cu=2.0 107
شکل5-39-منحنی دانه بندی خاک B، Cc=0.88 و Cu=12.6 107
شکل5-40-منحنی دانه بندی خاک C، Cc=1.6 و Cu=6.1 108
شکل5-41-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای خاک C و عدد متوسط تماسی برابر با CN=3.7 109
شکل5-42-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای خاک A و عدد متوسط تماسی برابر با CN=3.4 109
شکل5-43-نمایش زنجیره­ های نیروهای تماسی (Contact Force Chains) برای خاک B و عدد متوسط تماسی برابر با CN=3.2 110
شکل5-44-نمایش تغییرات تخلخل با زمان برای نمونه A (محور افقی زمان و محور قائم تخلخل می­باشد) 111
شکل5-45-نمایش تغییرات تخلخل با زمان برای نمونه B (محور افقی زمان و محور قائم تخلخل می­باشد) 111
شکل5-46-نمایش تغییرات تخلخل با زمان برای نمونه C (محور افقی زمان و محور قائم تخلخل می­باشد) 112
شکل5-47- نمایش تغییرات سرعت موج در خاک های A,B,C 113

 

 

فهرست جداول

جدول3-1-فاکتورهای دامنه محاسبه شده برای شبیه سازی DEM و روش تحلیلی( Zamaniو El Shamy (2011)) 28
جدول3-2-دامنه شتاب نسبت به حرکات خروجی محاسبه شده از شبیه سازی DEM و روش تحلیلی( Zamaniو El Shamy (2011)) 32
جدول 3-3-پارامترهای موج برای انتشار از طریق زنجیره ذرات (Williams و همکاران (2008)) 38
جدول 3-4-سرعت­های موج بدست آمده توسط محققین مختلف در مصالح دانه­ای 49
جدول3-5-نتایج شبیه سازی توسط DEM(Martin H. Sadd و همکاران 1999) 58
جدول4-1-پارامترهای شبیه سازی 66
جدول 4-2-مشخصات ماده مورد آزمایش 74

 

 

 

 

 

 

 

فصل اول

مقدمه

 

 

 

 

مصالح دانه‏ای از ذراتی مجزا تشکیل شده‏اند که رفتار ماکروسکوپی پیچیده‏ای در برابر بارهای خارجی از خود نشان می‏دهند. خاک‏ها نیز مصالحی متشکل از ذرات با اندازه ‏های مختلف می‌باشند و رفتار آنها‏ به وسیله نیروهای بین این ذرات تعیین می‏شود. با این وجود، این ویژگی آنها معمولاً در مدل‏سازی‌ها مورد توجه قرار نمی‏گیرد. نیروهای بین ذرات خاک شامل نیروهای ناشی از شرایط مرزی، نیروهای بین ذره‏ای (نیروهای تماسی) می‏باشند که تعادل نسبی بین این نیروها سبب آشکار شدن جنبه‌های مختلف رفتار خاک می‏شود.

پدیده انتشار موج نقش اساسی در مسائل مختلف دینامیکی مانند اندرکنش لرزه­ای خاک و سازه، روانگرایی و ارتعاش پی بازی می­ کند. درک اثرات محلی ساختگاه بر حرکات قوی زمین و ارزیابی پاسخ و تغییر شکل زمین در مقابل حرکات قوی برای سازه­ها و تاسیسات حیاتی از اهمیت زیادی برخوردار است. مطالعه انتشار موج در مصالح دانه­ای کاربردهای مهم صنعتی هم دارد. مصالح دانه­ای برای جذب موج­های ضربه­ای در مدت انتقال تجهیزات سنگین و برای ایزوله کردن تجهیزات حساس از لرزش­های زمین استفاده می­شوند. آن­ها همچنین در ساخت مولفه ­های سرامیک که نیاز به متراکم سازی دینامیکی پودرهای سرامیک است، کاربرد دارند. در تمامی این کاربردها نیاز است تا سرعت موج و ماهیت انتشار آن در مصالح دانه­ای، مطالعه شود.

تحقیقات در زمینه انتقال موج فشاری در خاک­های دانه­ای توسط محققین مختلف انجام شده است. آن­ها به بررسی میزان تاثیر عوامل مختلف بر سرعت انتشار موج پرداختند. فاکتورهایی مانند: عرض نمونه، نسبت میرایی، شکل ذرات، چیدمان ذرات، فرکانس ارتعاش، قطر و سختی سطح ذرات، فشار یا عمق پارامترهایی هستند که بیشتر مطالعات و شبیه­سازی­های محققین مختلف معطوف به آن­ها بوده است. با وجود تحقیقات قابل توجه انجام شده بر روی انتشار موج هنوز پارامترهایی وجود دارند که ممکن است بر انتشار موج در خاک­های دانه­ای تاثیرگذار باشند و میزان تاثیر آن­ها بر فرایند انتشار موج بررسی نشده است.

هدف اصلی از این تحقیق بهره­ گیری از یک تكنیک عددی (DEM) جهت ساده سازی و شیبه سازی پدیده پیچیده انتشارامواج درخاك است. از آنجاکه هنوز عوامل موثر در انتشار موج وجود دارند که تا کنون یا مورد بررسی قرار نگرفته ­اند و یا به طور جامع و مفصل مورد توجه واقع نشده ­اند، این انگیزه را ایجاد کرد تا بتوان با ادامه دادن تحقیق در این زمینه به بررسی برخی از این عوامل و میزان تاثیرگذاری آن­ها پرداخت. تا بتوانیم پدیده انتشار موج دریک خاك واقعی را مدل نموده و بدون نیاز به انجام آزمایشات پرهزینه و زمان بر ژئوفیزیكی درمحل و یا درآزمایشگاه بتوان سرعت انتشار امواج را با دقت كافی محاسبه نمود. با بررسی­ های انجام شده و پیشنهاداتی که محققین مختلف در مطالعات خود ارائه داده ­اند، در مطالعه حاضر به بررسی اثر پارامترهایی مانند: ضریب غیر یکنواختی اندازه دانه­ها (PDI)، دانه بندی خاک، ضریب اصطکاک، تخلخل، دانسیته بر سرعت موج پرداخته شده است. از روش المان­های مجزا به صورت دو بعدی جهت آنالیز ها استفاده شده است. لازم به ذکر است که مدل­سازی ها با بهره گرفتن از نرم افزار PFC2D صورت پذیرفته است.

مطالب این پایان‏ نامه در 6 فصل ارائه شده است. فصل اول، مقدمه بوده و به معرفی مطالعه و ویژگی‏های آن پرداخته است. فصل دوم به مرور فرمولاسیون روش المان‏های مجزا و مقدماتی از میکرومکانیک محیط‏های دانه‏ای می‏پردازد. در فصل سوم، تحقیقات انجام شده به روش المان‏های مجزا بر انتشار موج برشی و فشاری در مصالح دانه‏ای مورد بررسی قرار گرفته و زمینه ‏هایی که نیاز به تحقیقات بیشتر دارد، معرفی شده است. در فصل چهارم، به بررسی مراحل و چگونگی مدلسازی پرداخته شده است. در ضمن در همین فصل صحت سنجی مدل سازی انجام شده نیز مورد بررسی قرار گرفته است. در فصل پنجم به بررسی پارامترهای موثر بر سرعت انتشار موج پرداخته شده است. علل و میزان تاثیر این پارامترها بر سرعت انتشار موج بررسی و نتایج آن در انتهایی هر بخش به صورت نموداری ارائه شده است. در نهایت، اهم نتایج حاصل از این پژوهش در فصل ششم ارائه و جمع‏بندی گردیده است.

 

 

متن کامل را می توانید دانلود نمائید

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است

تعداد صفحه :144

قیمت 70 هزار تومان

70,000 تومانافزودن به سبد خرید

 
سایت سبز فایل بزرگترین و جامع ترین سایت مرجع فروش و دانلود پایان نامه های مقطع کارشناسی ارشد می باشد. با امکان دانلود رایگان دمو (فهرست و فصل اول همه پایان نامه ها در سایت به صورت رایگان در دسترس است تا کاملا با محتویات آن آشنا شوید) سایت سبز فایل امکان خرید پایان نامه را برای دانشجویان و محققان محترم برای استفاده در تحقیقات فراهم نموده است. برای پیدا کردن پایان نامه مورد نظرتان عبارت مورد نظر خودتان را در کادر زیر جستجو کنید:
در ضمن برای راحتی دسترسی ، عناوین همه فایل های مربوط به هر رشته را در یک صفحه گردآوری کره ایم. برای دسترسی به رشته مورد نظرتان از منوی بالای سایت وارد شوید.