دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق گرایش برق-مخابرات
با عنوان :تحلیل و شبیه سازی تقویت امواج عبوری از نانولوله های کربنی فلزی با بایاس DC
پایاننامه دوره کارشناسی ارشد مهندسی برق-مخابرات
تحلیل و شبیهسازی تقویت امواج عبوری از نانولولههای کربنی فلزی با بایاس DC
استاد راهنما:
دکتر نصرتا… گرانپایه
زمستان 1393
تکه هایی از متن به عنوان نمونه :
چکیده
تولید و تقویت بسامدهای رادیویی[1] قلب مخابرات ماهوارهای و کاربردهای الکترونیک نوری است. صنعت مخابرات بهدنبال تقویت کننده های بسامد رادیویی در مقیاس کوچکتر و موثرتر در بسامدهای بالاتر است. نانوساختارها به دلیل ویژگیهای منحصربهفردشان این نیازها را برآورده می کنند. در این پایان نامه ویژگیهای ساختار گرافین و نحوه شکل گیری نانولولههای کربنی از آن را بیان میکنیم، شباهتها و تفاوتهای ساختار نانولوله کربنی[2] و تقویتکننده لولهای موج رونده[3] را بررسی کرده و علت فیزیکی تقویت در این دو ساختار را مقایسه میکنیم. معادله بولتزمن که برای نانولولههای کربنی با بایاس همزمان AC و DC بهکارمیرود را بررسی میکنیم و بهتحلیل فیزیکی رسانایی تفاضلی منفی[4] ایجادشده در نمودارهای بهدست آمده میپردازیم. با توجه بهعدم تطبیق امپدانسی که در استفاده از نانولولههای کربنی در دنیای واقعی رخ میدهد باید بستر مناسبی برای کاهش عدم تطبیق امپدانس طراحی کنیم. در این طراحی از موجبر همصفحه به دلیل مزایایی که دارد مانند ظرفیت بسامد بالا، قابلیت ساخت در ابعاد زیر میکرو و… استفاده میکنیم. در مسیر عبور سیگنالِ موجبر همصفحه یک فضای خالی برای جاسازی نانولوله کربنی ایجاد میکنیم، سعی براین است که این فضای خالی تا حد امکان کوچک باشد تا تعداد نانولولههای کربنی بهکار رفته کاهش یابد. ساختار پیشنهاد شده باعث کاهش عدم تطبیق امپدانس شد.
کلیدواژه: نانولولههای کربنی، تقویت در نانولولههای کربنی بایاسشده، معادله بولتزمن، رسانایی تفاضلی منفی.
فهرست مطالب
فصل 1- معرفی نانولولههای کربنی 1
1-2- گرافین و نحوه ساخت نانولولههای کربنی از گرافین 3
1-3- انواع نانولولههای کربنی 9
1-3-1- نانولوله کربنی زیگزاگ … 13
1-3-2- نانولوله کربنی مبلی … 14
1-5- تقویتکننده لولهای موج رونده 17
1-6- کاربرد نانولولههای کربنی 19
2-4- معادله جریانِ رسانایی بر حسب میدان اعمالی 24
فصل 3- ساختار مناسب برای تطبیق امپدانس نانولولههای کربنی 33
3-2- مدل مداری نانولولههای کربنی 35
3-4- ساختار کلی موجبری الکترومغناطیسی و روش برقراری اتصال 38
فصل 4- شبیهسازی نانولوله کربنی با بایاسDC و AC 41
4-2- شبیهسازی نانولوله کربنی با بایاس DC 43
4-3- شبیهسازی با بهره گرفتن از معادلههای بولتزمن و با درنظر گرفتن بایاس DC و AC 49
4-3-1- نانولوله کربنی از نوع زیگزاگ با ضریب مشخصه (0،12) 49
4-3-2- نانولوله کربنی از نوع زیگزاگ با ضریب مشخصه (10،0) 54
4-3-3- نانولوله کربنی از نوع زیگزاگ با ضریب مشخصه (100،0) 56
فصل 5- شبیهسازی ساختار مناسب برای تطبیق امپدانس نانولولههای کربنی 61
5-2- شبیهسازی ساختار مناسب برای تطبیق امپدانس نانولوله کربنی 63
فصل 6- نتیجه گیریها و پیشنهادها 71
شکل (1‑1) اوربیتالهای اتمی اتصال کربن-کربن در صفحه گرافین [1]. 4
شکل (1‑2) شبکه فضای حقیقی گرافین. سلول واحد بهرنگ خاکستری است [1]. 4
شکل (1‑3) شبکه فضای k گرافین. ناحیه بریلوین بهرنگ خاکستری نشان داده شده است [1]. 5
شکل (1‑4) دیاگرام پاشندگی انرژی گرافین [1]. 7
شکل (1‑6) ساختار ششگوشه در صفحه مختصات گرافین [2]. 9
شکل (1‑11) احتمال اشغال الکترون برای (الف) (ب) [5]. 17
شکل (1‑12) ساختار تقویتکننده لولهای موج رونده [6]. 17
شکل (2‑3) مشخصه رسانایی تفاضلی نرمالیزهشده برحسب میدان الکتریکی DC اعمالی [8]. 31
شکل (3‑1) مدل مداری نانولوله کربنی [1]. 37
شکل (3‑2) نمایش عدم تطبیق امپدانس بین نانولوله کربنی و دنیای مقیاس بزرگ [1]. 38
شکل (3‑3) ساختار موجبر همصفحه (الف) نمای بالا (ب) نمای کنار [1]. 38
شکل (4‑1) سلول واحد نانولوله کربنی از نوع زیگزاگ (6،0). 45
شکل (4‑2) با گزینش سلولِ واحد نانولوله کربنی از نوع زیگزاگ (6،0)، 4 بار تکرار می شود. 46
شکل (4‑3) حالت بلاخ نانولوله کربنی از نوع زیگزاگ (6،0). 46
شکل (4‑4) اعمال بایاس DC بهنانولوله کربنی از نوع زیگزاگ (6،0) با . 47
شکل (4‑5) نمودار I-V بهدست آمده برای نانولوله کربنی با . 48
شکل (4‑6) رسانایی تفاضلی منفی برای نانولوله کربنی از نوع زیگزاگ (6،0). 49
شکل (5‑1) ساختار موجبر همصفحه برای بررسی عبور موج از درون نانولوله کربنی [14]. 64
شکل (5‑2) ساختار پیشنهادی برای بررسی تطبیق امپدانس. 64
شکل (5‑4) نحوه زمین کردن رسانای کناری در موجبر همصفحه. 66
شکل (5‑5) خطوط میدان الکتریکی (الف) مد زوج (ب) مد فرد [1]. 66
شکل (5‑6) قسمت حقیقی و موهومی رسانایی دینامیکی نانولوله کربنی از نوع مبلی [15]. 67
شکل (5‑8) سیگنال ورودی (قرمز رنگ) سیگنال خروجی (نارنجی رنگ). 69
شکل (5‑9) نمایش تقویت سیگنال. با بزرگنمایی کردن شکل (5‑8). 69
فصل 1- معرفی نانولولههای کربنی
1-1- دیباچه
نانولولههای کربنی[5] برای اولین بار توسط ایجیما[6] در سال 1991 کشف شدند و پس از آن تلاش های بسیاری برای پیش بینی ساختار الکترونیک آنها انجام شده است. به دلیل ویژگیهای منحصربهفردشان مانند :رسانایی بالا، انعطافپذیری، استحکام و سختی بسیار مورد توجه قرار گرفتند [1]. در این فصل بهبررسی ساختار نانولولههای کربنی و نحوه ساخت آنها از گرافین میپردازیم. انواع نانولولههای کربنی و نحوه شکل گیری آنها را توضیح داده، مباحث فیزیکی بسیار مهم در نانوساختارها را بیان میکنیم. همچنین ساختار تقویتکننده لولهای موج رونده[7] را مورد بررسی قرار میدهیم.
1-2- گرافین و نحوه ساخت نانولولههای کربنی از گرافین
گرافین یک تکلایه از گرافیت است. همانطور که در شکل (1‑1) نشان داده شده است، اتصال کربن-کربن در گرافین توسط اوربیتالهای پیوندی، 2sp، اتصالهای s را تشکیل می دهند و باقیمانده اوربیتالها، zp، اتصالهای π را تشکیل می دهند. اتصالهای π و s به صورت زیر تعریف میشوند:
s اتصالهای درون صفحهای را تشکیل میدهد، در حالیکه اتصالهای π، از نوع اتصالهای بیرون صفحهای است که هیچگونه برخوردی با هسته ندارند. اتصالهای s در گرافین و نانولولههای کربنی خصوصیتهای مکانیکی قوی را ایجاد می کنند. بهعبارت دیگر رسانایی الکترون به طور گسترده از طریق اتصالهای π است. با توجه بهشکل (1‑1) میتوان بهاین خصوصیت پی برد. همانطور که دیده می شود هیچگونه صفری[8] در اوربیتالهای اتصال π نیست، الکترونها آزادانه اطراف شبکه حرکت می کنند که اصطلاحا غیرمحلی شده[9] گفته میشوند و یک شبکه متصل تشکیل می دهند که نحوه رسانایی گرافین و نانولولههای کربنی را توضیح میدهد [1].
شکل (1‑1) اوربیتالهای اتمی اتصال کربن-کربن در صفحه گرافین [1].
شبکه فضای حقیقی دو-بعدی گرافین در شکل (1‑2) نشان داده شده است. سلولِ واحد گرافین از دو اتم مجزا با فاصله دروناتمی تشکیل شده است. بردارهای واحدِ آن بهشکل زیر هستند:
(1‑1)
که در آن ثابتشبکه است. سلول واحد از دو بردار شبکه تشکیل شده است، که در شکل (1‑2) بهرنگ خاکستری است [1].
شکل (1‑2) شبکه فضای حقیقی گرافین. سلول واحد بهرنگ خاکستری است [1].
شبکه دوبعدی فضای k در شکل (1‑3) نشان داده شده است. بردارهای واحد همپاسخ 1b و 2b توسط معادله زیر قابل دستیابی هستند:
(1‑2)
که dij دلتای کرونِکر است. در نتیجه:
(1‑3)
ثابت شبکه همپاسخ است. اولین ناحیه بریلوین[10] گرافین درشکل (1‑3) بهرنگ خاکستری نشان داده شده است [1].
شکل (1‑3) شبکه فضای k گرافین. ناحیه بریلوین بهرنگ خاکستری نشان داده شده است [1].
مدل اتصال محکم[11] به طور معمول برای دستیابی بهشکل تحلیلی پاشندگی انرژی الکترونی و یا ساختار باند E گرافین بهکار میرود. چون حل معادله شرودینگر عملا در سامانههای بزرگ غیرممکن است مدلهای تقریبی زیادی با افزایش یافتن پیچیدگی موجود است. تقریب اتصال محکم بهعنوان یکی از سادهترین روشها شناخته شده است. در این قسمت بهتوضیحی مختصر درباره چگونگی دستیابی بهرابطه پاشندگی الکترونی گرافین پرداخته می شود. چند فرض اولیه زیر را در نظر میگیریم:
- برهمکنش الکترون-الکترون را نادیده میگیریم. این یک مدل تکالکترونی است.
- تنها اتصالهای π در رسانایی تاثیر دارند.
- ساختار گرافین، بینهایت بزرگ، کاملا متناوب و هیچگونه نقصی ندارد.
برای رسیدن بهتابع پاشندگی گرافین باید معادله شرودینگر برای یک الکترون مورد اعمال پتانسیلِ شبکه، مانند زیرحل شود:
(1‑4)
H همیلتونینِ شبکه، U پتانسیل شبکه،m جرم الکترون، jE تابع ویژه وYj انرژی ویژه برای jامین باند با بردار موج k است. چون این یک مسئله متناوب است، تابع ویژه (یا تابع بلاخ[12]) باید تئوری بلاخ را که بهشکل زیر داده شده برآورده کند:
(1‑5)
بردار شبکه براوایس[13] است، r1 و r2 عددهای صحیح هستند [1]. بنابراین تابع موج در فضای همپاسخ با بردار شبکه همپاسخ متناوب است که q1 و q2 عدد صحیح هستند:
(1‑6)
در نهایت ساختار باند گرافین بهشکل زیر تقریب زده می شود [1]:
(1‑7)
پارامتر انتقال g0 با محاسبههای فرض اولیه[14] حدود 7/2 الکترونولت تخمین زده می شود. همانطور که انتظار میرود مقدارهای انرژی مثبت و منفی بهترتیب بهباند رسانایی و ظرفیت اشاره دارد. پاشندگی گرافین در شکل (1‑4) نشان داده شده است. دیده می شود که گرافین هیچگونه باند توقفی ندارد و نیمهرسانا با باند توقف صفر است. اگرچه کلمه رسانا بهگرافین یا نانولولهی کربنی با باند توقف صفر اشاره دارد. نقاطی که از انرژی فرمی عبور می کنند نقاط kگویند و با لبههای ششگوشه[15] برخورد دارند. بیشترین مشخصههای رسانایی الکترونیک با بایاس کم توسط نواحی اطراف نقاط k تعیین میشوند [1].
[1] Radio frequencies: RFs
[2] Carbon nanotube: CNT
[3] Traveling wave tube: TWT
[4] Negative differential conductivity: NDC
[5] Carbon nanotubes: CNTs
[6] Ijima
[7] Traveling wave tube: TWT
[8] Null
[9] Delocalized
[10] Brillouinz one: BZ
[11] Tight binding
[12] Bloch
[13] Bravais
[14] First principle
[15] Hexagon
ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
تعداد صفحه :113
قیمت : 14700 تومان
—-
پشتیبانی سایت : * parsavahedi.t@gmail.com
در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.
— — —
14,700 تومانافزودن به سبد خرید