دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق گرایش قدرت
با عنوان :آشکارسازی عیب سیستم های غیرخطی چندمتغیره با عدم قطعیت، با بهره گرفتن از رویتگرغیرخطی مقاوم و تخمینگر عیب عصبی
آشکارسازی عیب سیستمهای غیرخطی چندمتغیره با عدم قطعیت، با بهره گرفتن از رویتگرغیرخطی مقاوم و تخمینگر عیب عصبی
اساتید راهنما
مهدی علیاری شورهدلی
محمدعلی نکویی
زمستان 1393
تکه هایی از متن به عنوان نمونه :
چکیده
در این نوشتار تشخیص، بازسازی و پیشبینی عیب سیستمهای غیرخطی همراه با عدم قطعیت مورد بررسی قرار میگیرد. معیار عیبیابی سیگنال باقیماندهای است که از اختلاف خروجی سیستم و یک رویتگر مود لغزشی محاسبه میشود. ایدهی مود لغزشی در راستای جبران اثر عدم قطعیتها بر سیگنال باقیمانده میباشد. توانایی رویتگرلغزشی در رساندن سیگنال باقیمانده به سطح لغزشی صفر با حساسیت روش عیبیابی در تضاد است. این مشکل را با تطبیق بهرهی رویتگر لغزشی حل میکنیم. این الگوریتم تطبیق، بهرهها را تا حد نیاز مسئله برای جبران نامعینیهای مدل کاهش میدهد. خطای تخمین با بهرهی لغزشی کمینه به سطح صفر میرسد. با خروج خطای رویتگر از سطح لغزشی صفر رخداد عیب کشف و تطبیق بهره خاموش میگردد. بنابراین، اثر عیب در سیگنال باقیمانده بدون تضعیف توسط رویتگر لغزشی انتشار مییابد. به علاوه شبکهی عصبی تخمینگر برای بازسازی دینامیک عیب در متن رویتگر فعال میشود. قوانین بهروزرسانی وزنها به بهبود پایداری روش و همگرایی خطای تخمین کمک میکند. با تعریف آستانهی نابودی مناسب برای وزنهای شبکه، الگوریتم پیشبینی عیب از قانون بهروزرسانی وزنها استخراج میشود. بررسی پایداری لیاپانوف روش آشکارساز عیب در هر دو حوزه پیوسته و گسسته زمان بررسی میگردد. اثبات پایداری لیاپانوف در روشهای عیبیابی گذشته بهندرت دیده میشود.
کلید واژه: عیبیابی، سیستمهای غیرخطی، عدم قطعیت مدل، شبکهی عصبی، اثبات پایداری.
فهرست مطالب
عنوان صفحه
1-2- تاریخچه روشهای تشخیص و پیشبینی عیب 9
1-2-1- تاریخچه مطالعات روشهای برپایه مدل 10
1-2-1-1- تاریخچه مطالعات روشهای عیبیابی با مدل کمی 10
1-2-1-2- تاریخچه مطالعات روشهای عیبیابی با مدل کیفی 12
1-2-2- تاریخچه روشهای برپایه حافظهی فرایند 17
1-2-2-1- تاریخچه روشهای کیفی برپایه حافظهی فرایند 17
1-2-2-2- تاریخچه روشهای کمی برپایه حافظهی فرایند 19
1-3-1- روشهای نوین بر پایه داده 23
1-3-1-1- روشهای نوین آنالیز حوزه زمان-فرکانس 23
1-3-1-2- روشهای نوین طبقهبندیکننده 25
1-3-1-3- روشهای نوین آماری 27
1-3-2- روشهای نوین بر پایه مدل 29
1-3-2-1- روشهای نوین برپایه مدل، سیستمهای خطی 29
1-3-2-2- روشهای نوین برپایه مدل، سیستمهای غیرخطی 31
فصل 2- روشهای برپایه مدل در سیستمهای غیر خطی 37
2-2- دستهبندی روشهای برپایه مدل عیبیابی سیستمهای غیرخطی 38
2-2-3-1- رویتگرهای مقاوم برپایه سیستمهای فازی 44
2-2-3-2- رویتگرهای مقاوم برپایه شبکههای عصبی 48
2-2-3-3- اضافه کردن ترم مقاوم به رویتگر تطبیقی 57
2-3- جبران عیب در سیستمهای غیرخطی 71
2-4- خلاصه و نتیجهگیری از فصل 72
فصل 1- مقدمه
1-1- پیشگفتار
در صنایع ساخت و تولید، تلاش فراوانی در راستای تولید محصول با کیفیت بالا صرف می شود. تولید محصول با کیفیت مطلوب، متعاقبا بایستی ایمنی بالا و توجه به مقررات زیست محیطی را به دنبال داشته باشد. عملیاتی که زمانی برای ما قابل قبول بودند، با توجه به بالا رفتن انتظارات ما از صنایع، بیش از این مناسب به نظر نمیرسند. بنابراین، برای دستیابی به استاندارد های مطلوب تر، در فرایندهای صنعتی مدرن، چندین متغیر سیستم تحت کنترل حلقه بسته عمل میکنند. کنترلکنندههای استاندارد( همانند PID ها، کنترل کنندههای پیشبین و….) به گونهای طراحی میشوند که باکمرنگ کردن تاثیرات اغتشاش وارده به سیستم، عملکرد سیستم را در شرایط رضایت بخشی نگهدارند. گرچه این کنترلکننده ها می توانند، از عهده انواع مختلفی از اغتشاش برآیند، اما تغییراتی وجود دارند که کنترلکننده نمیتواند آن ها را ساماندهی کند. این تغییرات عیب[1] نامیده میشود[[i]]. به بیان دیگر میتوان هرگونه انحراف غیرمجاز در حداقل یک رفتار و یا پارامتر مشخصهی سیستم را عیب تعریف کرد[1].
افزایش مداوم پیچیدگی و قابلیت اطمینان و بازدهی در سیستمهای مدرن، مقتضی توسعهی پیوستهی حوزه ی کنترل و تشخیص خطا میباشد. این نیازمندی به وضوح در صنایعی که از لحاظ ایمنی بحرانی هستند، خود را نشان میدهد. این موارد شامل نیروگاه اتمی، صنایع شیمیایی و هواپیما گرفته تا صنایع جدید همچون وسایل نقلیه خودگردان و قطارهای سریع السیر میباشد. تشخیص و شناسایی به موقع خطا میتواند از توقف ناگهانی سیستم و خسارات جانی و مالی انسانها جلوگیری کند. در شکل 1—1. سیستم کنترل مدرن نحوه روبرو شدن با عیب در سیستمهای مدرن به تصویر کشیده شدهاست. همانگونه که مشاهده میشود، سیستم کنترل شده، بخش اصلی این تصویر میباشد که شامل محرک، سنسور و دینامیک فرایند است. هرکدام از این بخشها میتواند تحت تاثیر عوامل بیرونی مانند نویز فرایند، نویز اندازهگیری و یا اغتشاش خارجی قرار گیرد. به علاوه در مواردی که بحث تشخیص خطا با قابلیت اطمینان بالا مطرح می شود، بایستی عدم قطعیت های سیستم را در نظر گرفت. در چنین شرایطی سیستم همچنان ممکن است تحت تاثیر عیب ( با تعریفی که قبلا از آن ارائه شد) باشد [[ii]]. در این صورت انتظار ما از سیستم تشخیص عیب این است که بتواند رخداد عیب را از بین سایر عوامل بیرونی تمیز دهد.
1—1. سیستم کنترل مدرن [2]
همانگونه که قبلا بیان شد، در حالت کلی میتوان عیب را هر گونه انحراف غیر مجاز در رفتار و یا پارامترهای مشخصهی سیستم تعریف کرد؛ به عنوان مثال عملکرد نامناسب حسگر[2] در سیستم را میتوان به عنوان عیب در نظر گرفت. به بیان دیگر هر تغییر غیر منتظرهای که موجب تنزل عملکرد سیستم شود، در حوزه عیوب سیستم قرار میگیرد. در مقابل عیب اصطلاح نابودی[3] نیز مطرح میشود که به توقف و فروپاشی کامل سیستم اشاره دارد. شایان ذکر است که عیب بیشتر به عملکرد نامناسب گفته میشود و استفاده ازاصطلاح نابودی بیشتر مقتضی رخداد فاجعه است؛ چرا که در واقع نابودی، ناتوانی دائمی دستگاه را در انجام وظایفش تحت شرایط عملکرد تعریفی به همراه دارد[2].
دستهبندیهای مختلفی میتوان از عیب ارائه داد. دسته بندی میتواند براساس مکان رخ دادن عیب در سیستم و یا بر اساس تغییرات زمانی پیشرفت عیب در سیستم باشد. بر اساس محل عیب میتوان سه دسته عیب به صورت زیر تعریف کرد[2]:
الف. عیب محرک[4]، که شامل عملکرد نادرست در تجهیزاتی است که سیستم را تحریک میکند. به عنوان مثال عیب محرک الکترومکانیکی در یک موتور دیزلی.
ب. عیب فرایند[5]، هنگامی رخ میدهد که تغییرات در سیستم، عدم اعتبار روابط دینامیکی حاکم بر سیستم را به همراه داشته باشد. به عنوان مثال نشت تانک در یک سیستم کنترل دو-تانکه.
ج. عیب حسگر[6]، که خود را به صورت تغییرات جدی در اندازهگیریهای سیستم نشان میدهد.
همچنین بر اساس روند تغییرات زمانی عیب میتوان دستهبندی زیر را ارائه نمود[[iii]]:
الف. عیب ناگهانی[7]، که آن را به صورت توابع پلهای شکل مدل می کنند. این عیب معمولا خود را به صورت بایاس در سیگنال موردارزیابی نشان میدهد.
ب. عیب هموار[8]، که آن را به صورت توابع مرتبه اول مدل میکنند. این عیب معمولا خود را به صورت واگرا و منحرف شدن سیگنال موردارزیابی از مقادیر عادی نشان میدهد.
ج. عیب متناوب[9]، ترکیبی از ضربهها با دامنههای متفاوت است.
در شکل 1—1. سیستم کنترل مدرن [2]بلوکی تحت عنوان تشخیص خطا[10] به موازات سیستم اصلی قرار دارد. نقش اصلی این بلوک، مانیتور کردن رفتار سیستم و جمع آوری هرگونه اطلاعات مربوط به عملکرد غیر عادی در هریک از اجزای سیستم است. بنابراین وظیفه تشخیص خطا را میتوان به سه قسمت عمده تقسیم کرد[2]:
الف. کشف عیب[11]، این بخش به تصمیمگیری درباره وضعیت سیستم برمیگردد. تشخیص اینکه برای سیستم اتفاق غیر عادی رخ داده است و یا سیستم در شرایط عادی در حال کار است.
ب. تمیز دادن عیب[12]، این بخش به تعیین موقعیت و محل رخدادن خطا میپردازد. مثلا اینکه کدام سنسور و یا محرک درگیر عیب هستند.
ج. شناسایی عیب[13]، تعیین اندازه، نوع و طبیعت عیب در این بخش جا دارد.
روشهای تشخیص خطای مختلفی تا کنون طراحی شده اند. همچنین این روشها بر اساس معیارهای مختلفی به گروه های متفاوت قابل طبقه بندی هستند. در این قسمت دستهبندی زیر از [[iv]] ارائه شده است. روشهای عیبیابی را میتوان در سه دسته مختلف جای داد:
الف. سخت افزاری قابلیت اطمینان[14]، این روش از روشهای قدیمی عیبیابی میباشد. پایه این روش بر اساس استفاده از چندین حسگر، محرک و پردازشگر سختافزاری و یا نرمافزاری است که وظیفهی کنترل و اندازه گیری پارامتر بخصوصی از سیستم را به عهده دارند. در ادامه یک سامانه رایگیری به کار گرفته میشود که در مورد رخداد و عدم رخداد عیب و محل نسبی رخداد خطا تصمیم میگیرد. استفاده از این روش در سیستمهای بسیار حساس همچون کنترل پرواز بسیار مرسوم میباشد. گرچه این متود بسیار قابل اطمینان است؛ اما تجهیزات اضافه و نگهداری و تعمیر آن ها هزینهبر است. بهعلاوه نیاز به فضای لازم برای تجهیزات سخت افزاری این روش از مشکلات جدی آن به حساب میآید.
ب. روشهای برپایه سیگنال[15]، این روش در عمل یکی از روشهای متداول برای عیبیابی میباشد. ایدهی اصلی این روش مانیتور کردن سطح یک سیگنال خاص از سیستم میباشد؛ در صورتی که این سیگنال به یک حد آستانهی مشخص برسد، آلارم رخداد عیب فعال میشود. این متود برای استفادهی عملی بسیار راحت است؛ اما مشکلات و معایب جدی خاص خود را دارد. اولین مشکل این که این روش مقاوم[16] نیست. مقاوم نبودن به این معناست که در حضور نویز، تغییرات ورودی و یا تغییر نقطه کار ممکن است که آلارم رخداد عیب به اشتباه فعال شود. دومین مشکل این که یک عیب به تنهایی میتواند موجب تجاوز تعداد زیادی از سیگنالهای سیستم از حد آستانهشان شود؛ بدین ترتیب، تشخیص موقعیت و محل خطا بسیار سخت میشود. در راستای حل این مشکلات، ترکیب این روشها با روشهای آماری و تصادفی مطرح میشود؛ این روش برای توسعه دادن مقاومت و دقت روشهای عیب یابی است.
ج. روشهای برپایه مدل[17]، کلیت این روش را می توان به این صورت بیان کرد که ابتدا یک مدل ریاضیاتی از سیستم، با اطلاعات اولیهای که از سیستم داریم تعریف میکنیم؛ سپس برخی از پارامترهای قابل دسترس از سیستم اصلی اندازهگیری میشود. با بهره گرفتن از مدلی که در ابتدای کار طراحی شد، مقادیر پارامترهای اندازهگیری شده را تخمین میزنیم و پارامترهای واقعی سیستم با پارامترهای تخمینی از مدل سیستم مقایسه میشوند. سیگنالی به نام سیگنال باقیمانده از تفاوت بین مقادیر واقعی اندازهگیری شدهی پارامتر ها و مقدار تخمینی آنها ساخته میشود. در ادامه حد آستانهای بررای سیگنال باقیمانده تعریف میشود. سیگنالهای باقیماندهی مختلفی برای تشخیص رویداد عیب در قسمت های مختلف سیستم قابل نعریف هستند. تحلیل هر یک از این سیگنالهای باقیمانده میتواند در بخش تشخیص محل خطا مفید باشد.
گاه با در نظر نگرفتن متودهای عیب یابی سخت افزاری، که در دسته بندی قبل دسته الف را شامل میشدند، باقی روش های عیب یابی را در سه دسته جای میدهند. همانند آن چه در [1] آمده است. سه دسته یاد شده به این صورت میباشند:
الف. روشهای بر پایه داده[18]، این دسته از روشهای عیبیابی را میتوان معادل دسته بر پایه سیگنال در دستهبندی قبلی دانست. مقادیر اندازه گیری لازم به صورت مستقیم از داده های فرایند ضبط میشوند. سیستمهای کنترل صنعتی مدرن، از یک سیستم کاملا صنعتی گرفته تا یک ماشین تولید کاغذ ساده، سیستمهای بزرگ مقیاس[19] همراه با ابزارآلات پیچیدهی فر آیندهای مدرن هستند. سیستم های بزرگ مقیاس حجم عظیمی از دادهها را تولید میکنند. گرچه این دادههای تولیدی معادل اطلاعات زیاد از سیستم هستند؛ اما از سوی دیگر این مسئله حائز اهمیت است که اپراتور و یا مهندس بتواند با مشاهده کردن دادههای ضبط شده از سیستم به راحتی عملکرد سیستم را مورد ارزیابی قرار دهد. نقطهی قوت متودهای عیب یابی برپایه داده این است که میتواند دادهها با ابعاد بالا را به فضای با ابعاد کوچکتر انتقال دهد، که در فضای جدید تنها دادههای مهم موجود هستند.با محاسبه اطلاعات آماری معنادار از دادههای مهم فضای کاهش یافته، روشهای عیبیابی برای سیستمهای بزرگ مقیاس به طرز قابل توجهی توسعه یافتهاند. بزرگترین عیب این دسته، وابستگی شدید به کمیت و کیفیت دادههای فرایند میباشد.
ب. روشهای تحلیلی[20]، این دسته را می توان به عنوان زیر دستهای از گروه ج دستهبندی [4] در نظر گرفت. روشهای تحلیلی بر خلاف روشهای بر پایه داده، از مدلهای ریاضیاتی استفاده میکنند؛ این مدلهای ریاضیاتی از اصول اولیه به دست میآیند. روشهای تحلیلی در مواردی که اطلاعات کافی از سیستم داریم، کاربرد دارند؛ به عنوان مثال در جایی که مدل رضایتبخش و اطلاعات سنسورهای کافی از سیستم را در اختیار داریم. این دسته شامل روشهای تطبیقی تخیمن پارامتر[21]، روشهای رویتگر[22] و روشهای روابط معادل[23] میباشد. بیشترین کاربرد روشهای تحلیلی در سیستمهای با تعداد ورودی و خروجی و متغیرهای حالت کم میباشد. به کار بردن این روش برای سیستمهای بزرگ مقیاس کار سختی میباشد، چرا که نیازمند مدلی با جزئیات کافی از سیستم میباشد و تعریف همچین مدلی از سیستم بزرگ مقیاس نیازمند دستیابی به تمام وابستگیهای متقابل بین قسمتهای مختلف یک سیستم چند متغیره میباشد. مهمترین مزیت این روش همانگونه که از نام آن برمیآید قابلیت تفسیرپذیری فیزیکی پارامترهای فرایند است. به عبارت دیگر هنگامی که مدل ریاضیاتی جزئی از سیستم در دسترس باشد، استفاده از روشهای تحلیلی عیبیابی نسبت به روشهای برپایه داده ارجحیت دارد.
ج. روشهای برپایه اطلاعات، این دسته را می توان به عنوان زیر دسته دیگری ازگروه ج دستهبندی [4] در نظر گرفت. این روشها از مدلهای کیفی برای توسعهی عملکرد عیبیابی استفاده میکنند.این روشها به خصوص برای زمانی که مدل ریاضیاتی دقیقی از سیستم در دست نیست، بسیار قابل استفاده است.بسیاری از این روشها بر پایه اطلاعات غیر دقیق، سیستمهای هوشمند و شناسایی الگو عمل میکنند. همانند روشهای تحلیلی، از این دسته نیز در مورادی که تعداد ورودی، خروجی و متغیرهای حالت سیستم کم باشد استفاده میکنند چرا که تعریف یک مدل کیفی از سیستمهای بزرگ مقیاس نیازمند تلاش بسیار است. گاه با بهره گرفتن از روشهای نرمافزاری، امکان استفاده از روشهای برپایه اطلاعات، حتی برای سیستمهای پیچیده فراهم میشود.
تا کنون دو دسته بندی متداول از روشهای عیبیابی بیان شده است. اما دستهبندی کاملتری که در برخی مراجع دیده میشود به شرح زیر است. در این دستهبندی، روشها را به دو دسته اصلی برپایه مدل و بر پایه حافظهی فرایند تقسیم میکنند. هر کدام از این دسته های اصلی به دو زیر دسته تقسیم میشوند، زیر دسته کمی[24] و کیفی[25].
روشهای بر پایه مدل که در دسته ج دستهبندی[4] قبلا توضیح داده شد. این روشها بر اساس فهم فیزیکی اولیهای است که از سیستم در اختیار داریم. این اطلاعات پیشین هم در غالب مدلهای کمی و هم در غالب مدلهای کیفی قابل تحقق هستند. مدلهای کمی نیازمند اطلاعات دقیق و جزئی از فیزیک سیستم هستند، در حالی که مدلهای کیفی به صورت قواعد کیفی و مفاهیم فیزیکی کیفی قابل پیادهسازی هستند. دو زیر دسته اخیر پیش از این در دسته ب و ج از دستهبندی [1] توضیح داده شدند.
روشهای بر پایه حافظهی فرایند[26]، از مقادیر کافی دادههای موجود در حافظهی سیستم برای عیبیابی بهره میبرند. دادههای حافظه به اطلاعات مفیدی تغییر شکل یافته و به سیستم تشخیص خطا گزارش میشود. به فرایند تغییر شکل دادههای حافظه به اطلاعات مفید، استخراج مشخصه گویند. استخراج مشخصه هم می تواند طی یک پروسهی کمی صورت پذیرد و هم میتواند طی یک پروسهی کیفی باشد. حالت اول از طریق روشهای جعبهی سیاه[27]، بدون هیچ گونه اطلاعاتی از سیستم و حالت دوم از طریق روشهای جعبهی خاکستری[28]، با اطلاعات کیفی و نسبی راجع به سیستم ممکن است [[v]].
دستهبندی فوق از بین سایر دستهبندیها کاملتر به نظر میآید. روشهای برپایه مدل کمی را میتوان مجددا به دو زیر دسته جامع[29] و ساده شده[30] تقسیم کرد. برای مدل کردن حالت گذرای رفتار یک سیستم، استفاده از مدل جامع شامل جزئیات بسیار مفید است. زیر دسته دوم به جهت سادگی در مورد توجه است؛ چرا که با تبدیل مشتقات جزئی به مشتقات معمولی و یا حتی معادلات جبری، موجب سادگی محاسبات میگردد [[vi]]. مدلهای فیزیکی ساده شده، معمولا از یک مدل ریاضی صریح و ساده استفاده میکنند؛این امر تشخیص عیب را با سهولت بیشتری همراه میکند. مشکل روشهای کمی برپایه مدل این است که پیچیده هستند و به سختی قابل توسعه میباشند[6]، [[vii]]، [[viii]].
بر خلاف روشهای کمی برپایه مدل که از روابط ریاضی برای نمایش اطلاعات سیستم استفاده میکنند، روشهای کیفی برپایه مدل از روابط کیفی و اطلاعات پایهای برای نمایش اطلاعات سیستم استفاده میکنند. این دسته را میتوان به دو گروه روشهای برپایه قواعد و گروه روشهای بر پایه اطلاعات فیزیکی کیفی تقسیم کرد. روشهای برپایه قواعد از اطلاعات سیستم برای نوشتن پایگاهی از قواعد اگر-آنگاه استفاده میکند.این روشها به راحتی قابل توسعه و کاربرد هستند[6]. مدلهای کیفی دربردارندهی اطلاعات کیفی هستند که از رفتار فیزیکی سیستم استنباط میشود [[ix]]. روش های کیفی در فرایندهای غیر حساس بسیار پرکاربرد هستند[6]. وبرای این که بتوان عیب را به درستی تشخیص داد بایستی پایگاه قواعد کاملی داشته باشیم.
روشهای برپایه حافظهی فرایند، به دنیال یک رابطه صحیح بین ورودیها و خروجیهای اندازهگیری شده از سیستم هستند. اگر این رابطه هیچگونه کعنای فیزیکی خاصی نداشته باشد، روش جعبه سیاه خواهد بود[6]. اما در صورتی که رابطه استخراج شده بر اساس معانی فیزیکی نسبی سیستم باشد روش جعبه خاکستری خواهد بود. بهطور کلی روشهای برپایه حافظه هنگامی که دادههای آموزشی بهراحتی قابل تولید و جمع آوری باشند، بسیار کاربرد خواهند داشت [6].
دسته بندی های مختلفی از روشهای عیبیابی بیان شد. برای این که کاربر بتواند به این روشها اعتماد کند، این روش ها بایستی دارای خصوصیات لازم باشند. این خصوصیات در [7] به شرح زیر آمده است:
- کشف و تشخیص سریع محل عیب
- قابلیت تمیز دادن بین انواع مختلف عیب
- قابلیت شناسایی عیوب جدید
- مقاوم بودن، روش عیبیابی بایستی حساسیت کمی نسبت به نویز و عدم قطعیتهای سیستم داشته باشد.
- قابلیت تطبیق، مدلی که برای عیبیابی استفاده میشود، بایستی قابلیت تطبیق به رفتار دینامیکی سیستم را داشته باشد.
- قابلیت تشخیص چندین عیب مختلف
- امکان تفسیر پذیری، تصمیم و عملکرد یک واحد عیبیابی بایستی توجیهپذیر باشد.
- روش عیبیابی بایستی عدم قطعیت سیستم، اغتشاشات فرایند و عیب واقعی را از یکدیگر تمیز دهد.
[1]Fault
[2] Sensor
[3] Failure
[4] Actuator fault
[5] Process fault
[6] Sensor fault
[7] Abrupt fault
[8] Incipient fault
[9] Intermittent fault
[10] Fault diagnosis
[11] Fault detection
[12] Fault isolation
[13] Fault identification
[14] Hardware redundancy
[15] Signal based fault detection
[16] Robust
[17] Model based fault detection
[18] Data-driven methods
[19] Large-scale systems
[20] Analytical methods
[21] Adaptive parameter estimation
[22] Observer-based methods
[23] Parity relations
[24] Quantitative methods
[25] Qualitative methods
[26] Process history based
[27] Black box
[28] Gray box
[29] Quantitative detailed models
[30] Quantitative simplified models
[[i]] L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault Detection and Diagnosis in Industrial Systems. Springer, 2001.
[[ii]] M. Witczak, Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems. Springer, 2007.
[[iii]] S. Simani, C. Fantuzzi, and R. J. Patton, Model-Based Fault Diagnosis in Dynamic Systems using Identification Techniques. Springer, 2002.
[[iv]] I. Izadi Najaf Abadi, “Fault diagnosis in sampled-data systems”,Ph. D. Dissertation, Dept. ECE, University of Alberta, Edmonton, Fall 2006.
[[v]] M. D. Shah, “Fault detection and diagnosis in nuclear power plant- a brief introduction”, International Conference on current trends in technology, NuiCone, 2011.
[[vi]] S. Katipamula, M. Brambley, “Methods for fault detection, diagnostics, and prognostics for building systems- a review”, International Journal of HVAC&R research, vol.11, no.2, Apr. 2005.
[[vii]] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis Part I: Quantitative model-based methods”, Computers & Chemical Engineering 27, pp. 293-311, Apr. 2002.
[[viii]] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis Part III: Process history based methods”, Computers & Chemical Engineering 27, pp. 327-346, Apr. 2002.
[[ix]] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis Part II: Qualitative models and search strategies”, Computers & Chemical Engineering 27, pp. 313-326, Apr.2002.
ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
تعداد صفحه :107
قیمت : 14700 تومان
—-
پشتیبانی سایت : parsavahedi.t@gmail.com
در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.
*
14,700 تومانافزودن به سبد خرید