دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته شیمی

گرایش : ترموسینتیک

عنوان : مدل‌سازی ریفرمر كاتالیستی مونولیتی خودگرمازا  برای تولید هیدروژن برای پیل‌های سوختی

 دانشگاه علم و صنعت ایران

دانشكده مهندسی شیمی

مدل‌سازی ریفرمر كاتالیستی مونولیتی خودگرمازا  برای تولید هیدروژن برای پیل‌های سوختی

پایان‌نامه برای دریافت درجه کارشناسی ارشد

در رشته مهندسی شیمی گرایش ترموسینتیک

استاد راهنما:

دكتر سوسن روشن‌ ضمیر

اردیبهشت ماه   1390

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب

فصل 1: مقدمه  1

1-1- مقدمه. 2

فصل 2: مروری بر پیشینه تحقیق   6

2-1- مقدمه. 7

2-2- ریفرمینگ هیدروکربن‌ها 7

2-2-1- ریفرمینگ با بخار آب… 7

2-2-2- ریفرمینگ اکسایش جزئی… 9

2-2-3- ریفرمینگ خودگرمازا 11

2-3- مکانیزم واکنش برای ریفرمینگ متان.. 12

2-3-1- مدلهای سینتیكی برای ریفرمنیگ متان.. 14

2-3-2- مدلهای سینتیكی برای احتراق متان.. 18

2-3-3- مدلهای سینتیكی برای واکنش شیفت آب- گاز. 20

2-4- راكتورهای مورد استفاده برای فرآیند ریفرمینگ….. 21

2-5- مدل‌سازی‌های صورت گرفته برای راکتورهای مونولیتی… 22

2-6- نتیجه گیری… 33

فصل 3: ارائه‌ی مدل‌سازی   34

3-1- مقدمه. 35

3-2- مشخصات راكتور مونولیتی مدل‌سازی شده. 35

3-3- فرضیات و معادلات استفاده شده در مدل‌سازی… 37

3-3-1- مدل‌سازی مکانیزم واکنش….. 43

3-3-2- روابط سینتیكی برای ریفرمینگ خودگرمازای متان بر روی كاتالیست روتنیم  44

3-4- نتیجه‌گیری… 47

فصل 4: نتایج و بحث    49

4-1- مقدمه. 50

4-2- بررسی صحت مدل‌سازی… 50

4-1-1- مقایسه با نتایج آزمایشگاهی… 50

4-3- اثر میزان اکسیژن ورودی… 57

4-4- اثر میزان بخارآب ورودی… 62

4-5- بررسی اثر دمای گاز ورودی… 69

4-6- نتیجه‌گیری… 75

فصل 5: جمع‌بندی و پیشنهادات   76

5-1- مقدمه. 77

5-1-1- پیشنهادها 78

مراجع   79

پیوست                                                                                                90

 

 

فهرست اشکال

شکل (‏2‑1)-  نمایی از یك راكتور مونولیتی… 21

شکل (‏2‑2): کانتورهای دما بر روی سطح متقارن در x=0 در (a):  W/m.K76/2= k، W/m.K6/27= k، W/m.K2/55= k، W/m.K4/202= k، بر حسب درجه سانتیگراد. 31

شکل (‏2‑3): بازده ریفرمینگ بر مبنای هبدروژن و گاز سنتز در اثر تغییر توان حرارتی ورودی   32

شکل (‏3‑1)- راكتور استفاده شده توسط Rabe 36

شکل (‏3‑2)- سطح مش‌بندی شده هندسه مورد استفاده در مدل‌سازی… 37

شکل( ‏4‑1)- پروفایل غلظت گونه‌های شیمیایی حاصل از مدل‌سازی در شرایط آزمایشگاهی (1)- توان حرارتی kW 09/1. 53

شکل (‏4‑2)- پروفایل غلظت اجزاء در 5/2 میلیمتر ابتدایی کانال (الف): بخارآب (ب): متان، اکسیژن، دی‌اکسیدکربن و هیدروژن (ج) مونواکسید کربن (توان حرارتی ورودی kW 09/1) 54

شکل (‏4‑3)- پروفایل دمای حاصل از مدل‌سازی در شرایط آزمایشگاهی (1)- توان حرارتی kW 09/1 55

شکل (‏4‑4)- پروفایل دمای حاصل از مدل‌سازی در شرایط آزمایشگاهی (2)- توان حرارتی kW 97/0 55

شکل (‏4‑5)- پروفایل غلظت هیدروژن در اثر تغییر میزان اکسیژن ورودی  (9/2 =H2O /CH4 ، توان حرارتی kW 09/1) 58

شکل (‏4‑6) – پروفایل غلظت مونو‌اکسید‌کربن در اثر تغییر میزان اکسیژن ورودی   (9/2 = H2O /CH4  ، توان حرارتی kW 09/1) 59

شکل (‏4‑7) – پروفایل غلظت دی‌اکسید‌کربن  در اثر تغییر میزان اکسیژن ورودی   (9/2 =H2O /CH4  ، توان حرارتی kW 09/1) 59

شکل (‏4‑8)- پروفایل غلظت متان در اثر تغییر میزان اکسیژن ورودی  (9/2 =H2O /CH4  ، توان حرارتی kW 09/1) 60

شکل (‏4‑9)- اثر تغییر میزان اکسیژن ورودی بر روی میزان تبدیل متان  (9/2 =H2O /CH4  ، توان حرارتی kW 09/1) 60

شکل (‏4‑10)- پروفایل دما در اثر تغییر میزان اکسیژن ورودی  (9/2 =H2O /CH4  ، توان حرارتی kW 09/1) 61

شکل (‏4‑11)- پروفایل غلظت هیدروژن در اثر تغییر میزان اکسیژن ورودی  (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 63

شکل (‏4‑12)-  پروفایل غلظت مونو‌اکسید‌کربن  در اثر تغییر میزان اکسیژن ورودی   (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 64

شکل (‏4‑13)- پروفایل غلظت دی‌اکسید‌کربن  در اثر تغییر میزان اکسیژن ورودی   (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 64

شکل (‏4‑14)- پروفایل غلظت متان در اثر تغییر میزان اکسیژن ورودی  (8/3 = H2O /CH4 ، توان حرارتی kW 09/1) 65

شکل (‏4‑15)- اثر تغییر میزان اکسیژن ورودی بر روی میزان تبدیل متان  (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 66

شکل (‏4‑16)- پروفایل دما در اثر تغییر میزان اکسیژن ورودی  (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 66

شکل (‏4‑17)- تأثیر افزایش بخارآب بر روی ترکیب درصد متان خروجی از راکتور. 68

شکل (‏4‑18)- اثر دمای گاز ورودی بر روی ترکیب درصد متان خروجی از راکتور. 70

شکل (‏4‑19)- اثر دمای گاز ورودی بر روی ترکیب درصد هیدروژن خروجی از راکتور. 71

شکل (‏4‑20)- اثر دمای گاز ورودی بر روی ترکیب درصد مونواکسید کربن خروجی از راکتور 71

شکل (‏4‑21)- اثر دمای گاز ورودی بر روی پروفایل دمای درون راکتور. 72

شکل (‏4‑22)- اثر دمای °C 450 در ورودی راکتور بر روی کانتور دمای درون آن.. 73

شکل (‏4‑23)- اثر دمای °C 500 در ورودی راکتور بر روی کانتور دمای درون آن.. 74

شکل (‏4‑24)-  اثر دمای °C 550 در ورودی راکتور بر روی کانتور دمای درون آن.. 74

شکل (‏4‑25)- اثر دمای °C 600 در ورودی راکتور بر روی کانتور دمای درون آن.. 75
فهرست جداول

جدول (‏3‑1)- پارامترهای سینتیکی برای کاتالیست 5% (انرژی اکتیواسیون بر حسب kJ/kmol) 45

جدول (‏3‑2)- ثوابت جذب مواد برای فرآیند ریفرمینگ خودگرمازا  46

جدول (‏3‑3)- ثوابت تعادلی برای فرآیند ریفرمینگ خودگرمازا  47

جدول (‏4‑1)-  مشخصات خوراک ورودی به راکتور در کار آزمایشگاهی… 51

جدول (‏4‑2)- مقایسه نتایج حاصل از مدل‌سازی با کار آزمایشگاهی در شرایط توان حرارتی kW 09/1 52

جدول (‏4‑3)- مقایسه نتایج حاصل از مدل‌سازی با کار آزمایشگاهی در شرایط توان حرارتی kW 97/0 52

جدول (‏4‑4)- تأثیر افزایش بخارآب بر روی yield هیدروژن (%) 67

جدول (‏4‑5)- تأثیر افزایش بخارآب بر روی yield مونواکسیدکربن (%) 67

جدول (‏4‑6)- تأثیر افزایش بخارآب بر روی yield دیاکسیدکربن (%) 68

 1-

  • مقدمه

 

 


1-1- مقدمه

پیل‌های سوختی مستقیماً انرژی شیمیایی یک سوخت را به انرژی الکتریکی تبدیل می‌کند. پیل‌های سوختی، به علت دانسیته توان بالا، محصولات جانبی بی‌زیان برای محیط زیست و شارژ مجدد سریع، به عنوان یکی از تکنولوژی‌های نوین برای تولید انرژی در آینده و جایگزین مناسبی برای تولید انرژی از روش‌های مرسوم محسوب می‌شوند. مهم‌ترین مزیت پیل‌های سوختی، در مقایسه با موتورهای رفت و برگشتی و استرلینگ، امکان دستیابی به بازده بالاتر در تبدیل سوخت به الکتریسیته است که به ‌ویژه در مناطق آلوده مناسب است.

برای پیل‌‌های سوختی، هیدروژن سوخت ارجح است. مزیت استفاده از هیدروژن در پیل سوختی به واکنش‌پذیری زیاد آن برای واکنش الکتروشیمیایی آند و غیر آلاینده بودن آن برمی‌گردد. با این وجود، هیدروژن به صورت یک محصول گازی در طبیعت موجود نمی‌باشد. به همین جهت باید از آب، سوخت‌های فسیلی و سایر مواد با دانسیته هیدروژن بالا استفاده شود که می‌تواند فرآیند دشوار و پرهزینه‌ای باشد. همچنین ذخیره کردن هیدروژن، بخصوص برای استفاده در وسایل نقلیه و کاربردهای خانگی، هنوز به آسانی امکان‌پذیر نشده است. به همین منظور استفاده از سیستم‌های فرآوری‌ سوخت پیشنهاد شده است تا هیدروژن موردنیاز برای پیل‌های سوختی در محل تولید شود. استفاده از این سیستم‌های فرآوری سوخت، امکان ترکیب دانسیته انرژی بالای سوخت‌ها و دانسیته توان بالای پیل‌ سوختی را می‌دهد و در مجموع یک سیستم با بازده بالا را بوجود می‌آورد. تاکنون تحقیقات زیادی برای بررسی سیستم‌های فرآوری سوخت بصورت کار آزمایشگاهی و مدل‌سازی صورت گرفته است.

سه روش ریفرمینگ برای تولید هیدروژن وجود دارد که شامل ریفرمینگ با بخار آب (SR)[1]، اکسایش جزئی (POX) [2] و ریفرمینگ خودگرمازا (ATR) [3] است. ریفرمینگ با بخارآب، گرماگیر بوده و اکسایش جزئی یک فرآیند گرمازا می‌باشد. واکنش‌دهنده‌ها برای ریفرمینگ خودگرمازا شامل بخارآب، اکسیژن و سوخت می‌باشد. در واقع ریفرمینگ خودگرمازا، ترکیب ریفرمینگ با بخار آب و اکسایش جزئی می‌باشد. ریفرمینگ خودگرمازا به علت عدم نیاز به منبع حرارتی خارجی و تشکیل مقادیر کمتر از دوده، روش ارجح برای استفاده در یک وسیله نقلیه می‌باشد. در این مطالعه، با كمك دینامیك سیالات محاسباتی (CFD) [4] ریفرمر خودگرمازای متان مدل‌سازی شده است.

مهم‌ترین هدف این تحقیق، مطالعه عددی فرآیند ریفرمینگ خودگرمازای متان به کمک مدل‌‌سازی سه بعدی می‌باشد. به کمک نتایج حاصل از مدل‌سازی می‌توان تغییرات دما و غلظت اجزاء را در هر نقطه درون راکتور مورد مطالعه قرار داد. اهمیت این مدل‌سازی به تأمین اطلاعات برای طراحی سیستم‌های ریفرمینگ برمی‌گردد كه با كمك آن‌ها می‌توان از مشکلاتی نظیر تشکیل نقاط داغ درون راکتور که منجر به آسیب رسیدن به کاتالیست می‌شود، جلوگیری کرد. بنابراین مدل‌سازی CFD، به بهینه‌سازی طراحی راکتور و تعیین شرایطی که منجر به بهبود بازده تبدیل سوخت می‌شود، کمک می‌کند. همچنین زمان و هزینه لازم برای پیاده‌سازی ایده‌ها و طراحی‌های جدید کاهش می‌یابد.

تحقیقات زیادی برای ریفرمینگ خودگرمازای متان بر روی كاتالیست‌های مرسوم نظیر نیكل، پلاتین، پالادیم و … صورت گرفته است. در بسیاری از این تحقیقات، كاتالیست مورد استفاده برای بخش اكسایش جزئی و ریفرمنیگ با بخار آب، متفاوت است. مدل‌سازی‌های صورت گرفته در این تحقیقات هم عمدتاً بر مبنای رابطه‌‌ی سرعت‌های واكنش بر روی كاتالیست‌های مرسوم می‌باشد. در جستجوی انجام شده توسط نویسنده، تاكنون مدل‌سازی ریفرمینگ خودگرمازای متان بر روی كاتالیست 5% در یک راکتور مونولیتی صورت نگرفته است. هدف این تحقیق، مدل‌سازی ریفرمینگ خودگرمازای متان بر روی كاتالیست 5% به كمك دینامیك سیالات محاسباتی است. مزیت استفاده از كاتالیست 5% در آن است كه می‌تواند هر دو واكنش اكسایش جزئی و ریفرمنیگ با بخار آب را پیش ببرد. در مدل‌سازی صورت گرفته نیز از معادلات سرعت اصلاح شده برای كاتالیست  5% استفاده شده است. راكتور انتخاب شده در این تحقیق، یك راكتور مونولیتی كاتالیستی است. راكتورهای مونولیتی، از تعداد زیادی كانال جریان موازی هم كه توسط دیواره‌های جامد از هم جدا می‌شوند، تشكیل شده‌اند. راكتورهای مونولیتی به علت نسبت سطح به حجم بالا و افت فشار كم،‌ برای كاربردهای سیار مناسب می‌باشند.  با این وجود مدل‌سازی راكتورهای مونولیتی بسیار هزینه‌بر و زمان‌بر است. به همین منظور رفتار یك كانال از راكتور مونولیتی تقریباً مشابه رفتار كل راكتور مونولیتی فرض شده است و هندسه‌ی یك كانال به عنوان دامنه محاسباتی انتخاب شده است. این مدل‌سازی شامل مدلی سه بعدی برای راكتور كه در برگیرنده‌ی معادلات بقای جرم، ممنتوم، انرژی و بقای گونه‌های شیمیایی می‌باشد و نیز مدلی برای در نظر گرفتن مكانیزم و رابطه سرعت واكنش‌ها است. این معادلات به كمك نرم‌افزار Fluent 6.3.26 كه بر مبنای محاسبات حجم محدود [5] است، حل شده است. برای درنظر گرفتن رابطه سرعت واكنش‌ها از برنامه‌نویسی در محیط C++ استفاده شده است كه این برنامه قابلیت استفاده برای كارهای مشابه را دارد. نتایج این مدل‌سازی با كار آزمایشگاهی صورت گرفته برای ریفرمینگ خودگرمازای متان بر روی كاتالیست  5% مقایسه شده است. در ادامه اثر تغییر پارامترهای عملیاتی بر روی میزان هیدروژن و مونواکسیدکربن تولید شده و پروفایل دمای درون راکتور بررسی شده است. پارامترهای عملیاتی مورد بررسی شامل نسبت مولی اكسیژن به متان (O2/CH4)، نسبت مولی بخارآب به متان (H2O/CH4) و دمای گاز ورودی به راكتور می‌باشد.

نتایج تحقیق در گزارشی شامل پنج فصل ارائه شده است. بعد از ارائه مقدمات در فصل اول، در فصل دوم به بررسی فرآیندهای ریفرمینگ مورد استفاده برای تولید هیدروژن پرداخته شده است. در ادامه مدل‌های سینتیكی ارائه شده برای فرآیندهای ریفرمینگ متان ارائه شده اند و در نهایت مدل‌سازی‌های صورت گرفته برای راكتورهای مونولیتی مرور ‌شده است. فصل سوم به ارائه مشخصات راکتور مونولیتی مورد استفاده برای مدل‌سازی پرداخته است. همچنین فرضیات و معادلات بقای جرم، انرژی، ممنتوم و بقای گونه‌های شیمیایی حاکم بر مدل‌سازی ارائه می‌گردد. در نهایت معادلات سینتیکی مورد استفاده برای ریفرمینگ خودگرمازای متان بر روی کاتالیست  5% آورده ‌شده است. در فصل چهارم نتایج حاصل از مدل‌سازی مورد بحث و بررسی قرار گرفته‌اند و بهینه‌ترین حالت (در محدوده مورد بررسی) که منجر به بیشترین مقدار تولید هیدروژن می‌شود ارائه شده است. در نهایت در فصل پنجم، راه‌کارهای پیش رو برای بهبود نتایج مدل‌سازی ارائه شده‌اند.

[[1]] Steam Reforming

[[2]] Partial Oxidation

[[3]] Autothermal Reforming

[[4]] Computational Fluid Dynamics

[[5]] Finite Volume

تعداد صفحه :103

قیمت :14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :        *       asa.goharii@gmail.com

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.